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The process of absorption of radiant energy by a gray medium is considered. Formulas for the absorption
coefficient of a gray medium are derived on the basis of the reciprocity principle and Planck's law.

In reference [1] the author has shown that the total molecular energy transfer vector qy, and the total radiant energy
transfer vector q; are given by
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The molecular and radiant energy densities are
' 4
emm = 0¢T, &5, = 49, T1/cq.
The density of the molecular energy which is entrained by the radiant medium is

c.T.

tmr= Prérip
where

4,3
oy =45 Tr/cp .

If we assume that the molecular medium absorbs only the whole amount of its own radiant energy, then the den-
sity of the radiant energy which is absorbed by the molecular medium is &, = 40y T*cy.

Using the reciprocity principle, we obtain the relation
Qrremr /11 = @mmSrm/2mm - (1)
This relation, with the equalities a,, = co/4K, apm = Mep, yields
kE=10%c%c, T;/16ks, T3. (2)
This equation relates the absorption coefficient of a gray medium k with its thermal conductivity A.

One can introduce into the analysis the index of refraction of the medium n and assume that the molecular medium
absorbs only a part of the external radiant energy of the medium.

It is known [2] that the coefficient of entrainment of radiant energy is 1—n"2,

Under these assumptions we have

e =45, Tynlcy, ey = (1—n=") 45, T n/c,,
o, =43, TEn/c}, ay = co/bkn.
Substituting these expressions into (1) we obtain
k=gctc, T/16 o, T3 (n2 —1). )
At thermodynamic equilibrium (T = Ty) equation (3) reduces to
k= 62 3/16ha, T2 (12 — 1), @

In our opinion equation (3) gives a better representation of the physical nature of the "entrainment” of radiant
energy by a gray gas than equation (2). However, equation (3) involves the index of refraction of the medium, which is
not accurately known,
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Equations (2) and (3) can be used only in those cases in which heat is transferred in the medium solely by radiation
and conduction. Those are the cases of flow of a gray medium near solid surfaces.

When heat is transferred in the medium by radiation, convection and conduction, the principle of reciprocity leads
to very cumbersome formulas for the determination of k, which cannot be used in practice.

Thus it is necessary to find a more effective method for the determination of k than the method based on the prin-
ciple of reciprocity.

Consider a radiation field in thermodynamic equilibrium with a stationary gray medium.

The density of monochromatic equilibrium radiation de, is
~1
dey=4nl,ncy dv.

The distribution function Iy is given by Planck's law [3]:
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The radiation field in the gray medium is perfectly black. It contains photons with frequencies from 0 to «. There-
fore the global radiation density is

8n hn? v
g = clﬁ hy d v
Y t')J kT i
or
8n% kon®
gp = i T4, (5)
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We may also write
g, = 4= [yn/c,, (6)
where
1() = Ty T4/7f,
and
oy = 2n5 ko 1/ 15c2 . (7
The concentration of photons with frequency v is dny = de;/hv, or
8nv nd i
dny = “—“CT— —p, — — dv.
0
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The concentration of photons in the frequency range 0 to « is

fy = 3
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Introducing the variable x = hv/koT, we can write

_ 8= kS T3n3 r x2dx
coh?



Taking into account that

— ___1____ = g% +e—2x + e—-3x + e,
ex--1
we have
2 i.; @ o0
S' A _d)fl_ = \e~*x%dx + (e‘”ﬁdx + Ye—a‘xzdx =
,ex J—
0 b s 5
=2(1 RN |) — 2.332,
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Substituting this result, we obtain
ny = 18.59x (kon/cyh)® T3. (8)

Introducing the notion of a mean photon energy €y, defined by the equation &g = &;/ng, or
=5 ko nd / kon \3
tp = — R s [y 5gn [ R \ps,
15¢cy A® coht

Carrying out the arithmetic, we obtain
o = 2.8k0T. (9)

Equation (9) shows that the mean photon energy depends only on the equilibrium temperature of the medium.

Assume that emission and absorption of radiant energy by the equilibrium medium take place in a discrete manner,
in the form of photons, each of which has the energy ¢.

The volume of a space cell occupied by a photon is

Up = gp/er = 1/ny.

Taking account of equation (8), we obtain

3,3 3,3
gy = ] Dk _ g0171 Sf

— 0 (10)
' 18.59r KTt B T3

Let us choose a direction § in the medium at equilibrium, and let I, be a line segment in this direction. Let this
segment be the minimum length over which the total energy emitted by the medium in the s direction per unit solid
angle is the same as that emitted by a perfectly biack body. This definition allows us to write

Ml =lo. (11)

In thermodynamic equilibrium, radiant energy with intensity Iy must be fully absorbed over the distance Iy, as
otherwise the intensity at the end point of the segment I, would differ from I;. Using Bouguer's law, we can write

kIl im = 1o,
where k - 1/l is the coefficient of absorption of the medium.
The emission of the space cell v, of a photon is perfectly black. Thus
4mnuy = 4w Ll I,
Taking into account that Io/% = I, we obtain vq = l?m, which gives
lLrm = 0.258 ¢oh/nk,T. (12)

Thus, the volume of the space cell of a photon is a cube with edges of length [ .

The coefficient of absorption k is thus given by the equation

k = 3.88 nk,T/coh. (13)
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Equation (13) shows that the absorption coefficient for a medium at equilibrium is a function of its optical proper-
ties (index of refraction n) and its temperature T.

Note, that fora vacuum n = 1 and k¢ = 0. Consequently, k = 0.
The time of formation of a photon 7y is determined by the equation
460 T4 Uok Top == 2.8 koT,
which gives
To = 2.8k0T/4U() T4 Uok
Taking account of equations (10) and (13), we obtain
7o = 0.258h/k,T. (14)

Equation (14) indicates that the time of formarion of a photon is independent of the optical properties of the medi~
um (the index of refraction n) and depends only on its temperature T.

Equations (12) and (14) yield lrm = ¢pTe/n, i.e., the photon mean free path is equal to the distance travelled by
the radiant energy during the time of formation of one photon.

As the time of formation of a photon 7, does not depend on n, we have the relation
{rm n/cy = const. (15)
In a medium at equilibrium we have the relation 1 = k00T4/‘n', or
1 = 50.7 n® kg T/ch ht, (16)
Equation (16) can be used to calculate the true emission coefficient of a medium at equilibrium.

Consider a gray medium in a state of nonequilibrium. The radiation field of such a medium is characterized by
the true emission intensity I, and the external radiation intensity I,. There exists a length I, over which the radiant
energy with intensity Ir is fully absorbed by the medium, which allows us to write kI;l;; = [, and hence

k= 1l. (17)

Over the length I, the medium absorbs the radiant energy kI;1.,,. Under conditions of local radiative equilibrium
this energy is transformed by the medium into true emission energy with intensity Ip. Thus kI 2., = I, but taking into
account that I/I; = (T/Tr)4, we obtain

4
k= 3.88 —n—’i"z(-T‘) . (18)
Co T

Equation (18) shows that the quantity k depends on the ratio T/T}, which characterizes the degree of equilibrium
of a gray medium, and on the direction for which the quantity T is evaluated.

Averaging the variable k over all directions, we obtain

k=388 Rl —l*j‘T;"dm,
4

coh
4=

which is approximately equal to

4
k= 3.88 kT (—T—) ) (19)
Co Ty

The time of formation of a photon in a nonequilibrium medium is determined by the equation
40, T vk 1p = 2.8k, T,
which gives

T, = 2.8 k,T/40, Tg vk.
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Taking account of (18), we can write

2,8k Tcoh
46, T* v, 3,88nk,T

or

Tvr = Tos

i.e., the times of formation of a photon in equilibrium and nonequilibrium media are the same.

Equation (19) can be used in the analysis of complex heat transfer during the motion of a gray continuum near a
heat~-absorbing wall with temperature Ty,. Assuming that the medium is in local radiative equilibrium, we can rewrite
equation (19) in the form

k= 3.88 1l T

' ch  THHATE
Taking into account that

Api_ L dT*

koody
we obtain
h—3gg el 4 AT (20)
colt T dy

In the case of linear dependence of T — Ty, on y, equation (20) for an equilibrium layer with temperature T4 becomes

h=sgg el 4 Ti—Ty 1)
Coh Ta lS

In the case of a layer at equilibrium we have

T R
»=oo(~—_——) (Ti—Th),
d_l/ 3
[
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The specific total heat flux q consists of a radiant heat flux and a conductive heat flux, and in optically dense
media is defined by

Oo

9y 5

Hence

1 1 —1 4 4 ‘)\
= —_—— T; —Tg) +
9 GO(AW 2 ) (s —Tw) !

(Ts —Ty). (23)

s

Equations (21)-~(28) involve four unknown variables — q, T, k, and I;. Given one of these, the other three can be
determined.

Thus, these equations can be used in the analysis of various heat exchangers with complex heat transfer processes.
NOTATION

n — index of refraction of the medium, depending on its optical properties; ¢y — speed of light; v — vibration
frequency; M — true emission coefficient of the medium; I, — photon mean free path; T — temperature of an equili-
brium layer; I, — distance between the equilibrium layer and the wall.
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